21 research outputs found

    Vapor flux and recrystallization during dry snow metamorphism under a steady temperature gradient as observed by time-lapse micro-tomography

    Get PDF
    Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM) under a constant gradient of 50 K m<sup>−1</sup>, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow

    A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream

    Get PDF
    Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials

    Present and Future X-ray Tomographic Microscopy at TOMCAT

    Full text link
    During its first four years of life, the TOMCAT beamline [1] at the Swiss Light Source has established itself as a state‐of‐the art hard x‐ray tomographic microscopy endstation for experiments on a large variety of samples, ranging from the fields of biology to materials science. It routinely performs absorption as well as phase‐contrast imaging with an isotropic voxel size ranging from 0.360 up to 14.8 microns. Phase contrast is obtained either with simple edge‐enhancement, a modified transport of intensity approach [2] or grating interferometry [3]. Typical acquisition times are on the order of a few minutes, depending on energy and resolution. A recently implemented automatic sample exchanger is now available for high‐throughput studies [4]. In addition to further developments in phase‐contrast imaging, current scientific activities at the beamline focus on pushing spatial and temporal resolution by a few orders of magnitude, aiming at nano‐ [5] and “real‐time” [6] tomography

    Early tumor development captured through nondestructive, high resolution differential phase contrast X-ray imaging

    Full text link
    Although a considerable amount is known about molecular dysregulations in later stages of tumor progression, much less is known about the regulated processes supporting initial tumor growth. Insight into such processes can provide a fuller understanding of carcinogenesis, with implications for cancer treatment and risk assessment. Work from our laboratory suggests that organized substructure emerges during tumor formation. The goal here was to examine the feasibility of using state-of-the-art differential phase contrast X-ray imaging to investigate density differentials that evolve during early tumor development. To this end the beamline for TOmographic Microscopy and Coherent rAdiology experimenTs (TOMCAT) at the Swiss Light Source was used to examine the time-dependent assembly of substructure in developing tumors. Differential phase contrast (DPC) imaging based on grating interferometry as implemented with TOMCAT, offers sensitivity to density differentials within soft tissues and a unique combination of high resolution coupled with a large field of view that permits the accommodation of larger tissue sizes (1 cm in diameter), difficult with other imaging modalities

    3D-characterization of three-phase systems using X-ray tomography: tracking the microstructural evolution in ice cream

    Full text link
    The microstructure of food is key to its sensorial perception, and methods to characterize the microstructure are of crucial importance in food engineering. Ice cream is a special example whose microstructure changes dramatically in response to temperature variations. Since ice cream is a multiphase material, the complex interactions among the phases and the physical mechanisms that drive the evolution of microstructure are not yet well understood. This is mostly due to the fact that observing the microstructure with traditional microscopic methods is destructive and does not allow the study of undisturbed samples. With X-ray micro-tomography, it is possible to overcome these limitations and carry out time lapse studies of the evolution of the microstructure of ice cream. Using iodine as a contrast agent, we measured the three-dimensional distribution of the three main phases (air, unfrozen sugar solution, and ice crystals) with a voxel size of 6 ÎŒm. An automated routine was developed that allows for the segmentation of the three phases. Based on the three-dimensional data we calculated the temporal evolution of air bubble sizes and ice crystal sizes during cyclic variations of temperature. Under the given temperature variations we find strong hints that for ice crystal coarsening a melt refreeze mechanism and for air microstructure coarsening coalescence are the dominating underlying mechanisms. This method—which can be applied to a plethora of soft multiphase materials—provides new insights into the coarsening mechanisms of multiphase materials and could contribute to a better understanding of complex materials

    Can we develop an early warning system for patients after cell transplantation therapy using X-ray imaging?

    No full text
    Over the last decades, several new therapeutic concepts which include the transplantation of cells have been developed for diseases of the central nervous system (CNS). The migration of implanted cells away from the intended transplantation site as well as tumour formation from unchecked cell proliferation are potential risks of such therapeutic approaches. In order to follow cell migration and possibly proliferation we have developed a technique that allows detection and tracking of implanted cells which have been marked with gold nanoparticles (GNPs) prior to implantation into the host organism. The GNP-loaded cells provide sufficient contrast to be detected with synchrotron X-ray imaging methods. Very small cell clusters and even individual cells can be detected. The price for the high spatial resolution is the exposure of implanted cells and host organism to comparably high radiation doses during the imaging procedures. Therefore, before advocating use of the technique to follow up larger series of transplantation experiments in small animal models of CNS disease it is absolutely mandatory to obtain experimental evidence regarding the threshold X-ray dose above which single or repeated imaging would interfere with the functionality of GNP-loaded cells. Only once this question has been answered should the possibility to develop this method towards clinical application be considered

    Tomographic Hard X-ray Phase Contrast Micro- and Nano-imaging at TOMCAT

    Full text link
    This article illustrates the phase contrast instrumentation installed at the Tomographic Microscopy and Coherent Radiology beamline (TOMCAT) of the Swiss Light Source. Our experimental framework has been designed to extract phase information at spatial resolutions covering three orders of magnitude. For moderate (5-10 microns) resolutions we implemented a two-gratings interferometer, operated at energies between 14 and 40 keV. For high resolution (1-5 microns) we obtain phase information thanks to a modified transport of intensity approach. For very high-resolutions (0.1-0.5 microns) we developed a broadband hard X-ray full-field microscope operated in Zernike-phase contrast

    Towards x-ray differential phase contrast imaging on a compact setup

    Full text link
    A new imaging setup, aimed to perform differential X-ray phase contrast (DPC) imaging with a Talbot interferometer on a microfocus X-ray tube, is demonstrated. The main features compared to recently proposed setups are an extremely short source to detector distance, high spatial resolution and a large field of view. The setup is designed for an immediate integration into a industrial micro CT scanner. In this paper, technical challenges of a compact setup, namely the critical source coherence and divergence, are discussed. A theoretical analysis using wave optics based computer simulations is performed to estimate the DPC signal visibility and the size of the field of view for a given setup geometry. The maximization of the signal visibility as a function of the inter-grating distance yields the optimal grating parameters. Imaging results using the optimized grating parameters are presented. The reduction of the field of view, being a consequence of the high beam divergence, was solved by fabricating new, cylindrically bent diffraction gratings. The fabrication process of these gratings required a change of the currently used wafer materials and an adaption of the manufacturing techniques. The implementation of the new setup represents a major step forward for the industrial application of the DPC technique
    corecore